正交矩阵特征值为什么只能是正负一
回答
爱扬教育
2022-06-12
- 相关推荐
扩展资料
证: 设A是正交矩阵, λ是A的特征值, α是A的于λ的特征向量
则 A^TA = E (E单位矩阵), Aα=λα, α≠0
考虑向属量λα与λα的内积.
一方面, (λα,λα)=λ^2(α,α).
另一方面,
(λα,λα) = (Aα,Aα) = (Aα)^T(Aα) = α^TA^TAα
= α^Tα = (α,α).
所以有 λ^2(α,α) = (α,α).
又因为 α≠0, 所以 (α,α)>0.
所以 λ^2 = 1.
所以 λ = ±1.
即正交矩阵的特征值只能是1或-1